Journal of cancer and Therapeutics Journal of cancer and Therapeutics Journal of cancer and Therapeutics


Anti-Cancer Drugs
Anticancer drug, also called antineoplastic drug, any drug that is effective in the treatment of malignant, or cancerous, disease. There are several major classes of anticancer drugs; these include alkylating agents, antimetabolites, natural products, and hormones. In addition, there are a number of drugs that do not fall within those classes but that demonstrate anticancer activity and thus are used in the treatment of malignant disease. The term chemotherapy frequently is equated with the use of anticancer drugs, although it more accurately refers to the use of chemical compounds to treat disease generally.
Anticancer drugs are agents that demonstrate activity against malignant disease. They include alkylating agents, antimetabolites, natural products, and hormones, as well as a variety of other chemicals that do not fall within these discrete classes but are capable of preventing the replication of cancer cells and thus are used in the treatment of cancer.
Hormones are used primarily in the treatment of cancers of the breast and sex organs. These tissues require hormones such as androgens, progestins, or estrogens for growth and development. By countering these hormones with an antagonizing hormone, the growth of that tissue is inhibited, as is the cancer growing in the area. For example, estrogens are required for female breast development and growth. Tamoxifen competes with endogenous estrogens for receptor sites in breast tissue where the estrogens normally exert their actions. The result is a decrease in the growth of breast tissue and of breast cancer tissue. Adrenocorticosteroids are also used for treating some types of cancer. The hormones are an example of a site-specific antineoplastic drug, but they work only on certain types of cancer.
Understanding of the basic biology of cancer cells has led to drugs with entirely new targets. One agent, interleukin-2, regulates the proliferation of tumour-killing lymphocytes. Interleukin-2 is used in the treatment of malignant melanoma and renal cell carcinoma. Trans-retinoic acid can promote remission in patients with acute promyelocytic leukemia by inducing normal differentiation of the cancerous cells. A related compound, 13-cis-retinoic acid, prevents the development of secondary tumours in some individuals. A particularly exciting application of cancer biology stems from the understanding of DNA translocation in chronic myelocytic leukemia. This translocation codes for a tyrosine kinase, an enzyme that phosphorylates other proteins and is essential for cell survival. Inhibition of the kinase by imatinib has been shown to be highly effective in treating patients who are resistant to standard therapies.
Hydroxyurea inhibits the enzyme ribonucleotide reductase, an important element in DNA synthesis. It is used to reduce the high granulocyte count found in chronic myelocytic leukemia. Asparaginase breaks down the amino acid asparagine to aspartic acid and ammonia. Some cancer cells, particularly in certain forms of leukemia, require this amino acid for growth and development. Other agents, such as dacarbazine and procarbazine, act through various methods, although they can act as alkylating agents. Mitotane, a derivative of the insecticide DDT, causes necrosis of adrenal glands.
A number of agents synthesized from plants are used in the treatment of cancer. Paclitaxel was first isolated from the bark of the western yew tree. It stops cell division by an action on the microtubules and has been tested for activity against ovarian and breast cancers. The camptothecins are a class of antineoplastic agents that target DNA replication. The first compound in this class was isolated from the Chinese camptotheca tree. Irinotecan and topotecan are used in the treatment of colorectal, ovarian, and small-cell lung cancer. Vinblastine and vincristine (vinca alkaloids), derived from the periwinkle plant, along with etoposide, act primarily to stop spindle formation within the dividing cell during DNA replication and cell division. These drugs are important agents in the treatment of leukemias, lymphomas, and testicular cancer. Etoposide, a semisynthetic derivative of a toxin found in roots of the American mayapple, affects an enzyme and causes breakage of DNA strands.
Journal of cancer and Therapeutics
Journal of cancer and Therapeutics








CONTACT US


ARJYOPA
#2, RBC Road, Dum Dum, Gora Bazar
Kolkata - 700028, WestBengal, India
Ph: +91 9903058585 / +91 9706182257
E: enquiry@cancerjournal.org / contact@cancerjournal.info


WRITE TO US
Journal of cancer and Therapeutics
© 2017- 2019 Arjyopa - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version